跳到主要內容區

王子建

王子建

教授

研究室:億光大樓 929室
電話:(02)2771-2171  分機 4631
傳真:(02)8773-3216

 

 

簡介

Tzyy-Jiann Wang received the B.S. and Ph.D. degrees in electrical engineering from National Taiwan University, Taipei, Taiwan, in 1992 and 1999, respectively. In 2000, he joined the faculty of the Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan. Since 2008, he has been a Professor. He was the chairman of the Department of Electro-Optical Engineering, National Taipei University of Technology in 2014–2017. His current research interests include surface enhanced Raman scattering (SERS) devices, optical microring/microdisk resonators, integrated-optic devices, surface-plasmon-resonance (SPR) biosensors, short-pulse fiber lasers, and optoelectronic device simulation.

學歷

  • 國立臺灣大學 電機工程研究所光電組 博士

  • 國立臺灣大學 光電工程研究所碩士班 肄業 (直攻博士)

  • 國立臺灣大學 電機工程系 學士

現職及經歷

  • 國立臺北科技大學 特聘教授 (2022/08~2025/07)

  • 國立臺北科技大學 光電工程系 教授(2008/2~迄今)

  • 國立臺北科技大學 光電工程系 系主任(2014/8~2017/7)

  • 國立臺北科技大學 光電工程系 副教授(2003/8~2008/1)

  • 國立臺北科技大學 光電工程系 助理教授(2000/2~2003/7) 

  • 國立臺灣大學 電機系暨研究所 半導體實驗專任助教(1994/8~1999/7)

授課課程

  • 積體光學 (大學部/研究所)

  • 光電半導體製造 (大學部/研究所)

  • 光電電磁學 (研究所)

  • 光電材料與元件 (研究所)

  • 傅氏光學 (研究所)

  • 電子學二 (大學部)

  • 電子實驗二 (大學部)

  • 普通物理 (大學部)

  • 普通物理實驗 (大學部)

研究領域

  • 表面增強拉曼散射元件 Surface enhanced Raman scattering (SERS) devices

  • 金屬/半導體奈米複合材料之合成 Synthesis of metal/semiconductor nanocomposites

  • 光學微環形/微碟形共振元件 Optical microring/microdisk resonators

  • 電化學感測元件 Electrochemical sensing devices

  • 鈮酸鋰積體光學元件  Lithium niobate integrated-optic devices

  • 液晶調變積體光學元件  Liquid-crystal-modulated integrated-optic devices

  • 表面電漿共振生化感測器  Surface plasmon resonance biosensor

  • 短脈衝光纖雷射  Short-pulse fiber laser

  • 光電元件模擬  Optoelectronic device simulation

研究計畫

  • 國科會專題研究計畫, 使用鐵電模板製作金屬/半導體複合奈米材料在表面增強拉曼散射應用之研究, 2022/8/1~2025/7/31

  • 科技部專題研究計畫, 高效率電光調變之異質波導耦合鈮酸鋰微碟共振器, 2021/8/1-2022/7/31

  • 科技部專題研究計畫, 應用於曲面檢測之表面增強拉曼散射基板的綠色製程開發, 2019/11/1-2021/1/31

  • 科技部專題研究計畫, 應用鐵電模板製作表面增強拉曼散射光波導感測元件, 2018/8/01-2021/7/31

  • 科技部專題研究計畫, 具選擇性模態調變結構之微碟形共振元件, 2017/8/01-2018/9/30

  • 科技部專題研究計畫, 鈮酸鋰微碟形雷射之研究, 2014/8/1-2017/7/31

  • 國科會專題研究計畫, 高品質鈮酸鋰微碟形共振元件研究與應用,2013/8/1-2014/7/31

  • 國科會專題研究計畫, 鈮酸鋰波導耦合微碟形結構之製作與應用,2012/8/1-2013/7/31

  • 國科會專題研究計畫, 新型鈮酸鋰底切微碟形元件之研製,2011/8/1-2012/7/31

  • 國科會專題研究計畫, 新型鈮酸鋰環形共振元件之研製與應用(3/3),2010/8/1-2011/7/31

  • 國科會專題研究計畫, 新型鈮酸鋰環形共振元件之研製與應用(2/3),2009/8/1-2010/7/31

  • 國科會專題研究計畫, 新型鈮酸鋰環形共振元件之研製與應用(1/3),2008/8/1-2009/7/31

  • 國科會專題研究計畫, 新型高敏感度表面電漿共振生化感測技術之研究,2007/8/1-2008/7/31

  • 國科會專題研究計畫, 新型表面電漿共振生化感測元件之研究,2006/8/1-2007/7/31

  • 國科會專題研究計畫, 新型可調式積體光學分波多工元件之研究,2005/8/1-2006/7/31

  • 國科會專題研究計畫, 新型鉺鐿共摻雜鈮酸鋰波導雷射之研製,2004/8/1-2005/7/31

  • 國科會專題研究計畫, 鎖模式摻鉺鈮酸鋰雷射之研製(2/2),2003/8/1-2004/7/31

  • 國科會專題研究計畫, 光波導雙折射率量測系統之研發,2002/12/1-2004/1/31

  • 國科會專題研究計畫, 鎖模式摻鉺鈮酸鋰雷射之研製(1/2),2002/8/1-2003/7/31

研究成果殊榮

  • 國立臺北科技大學111年度傑出研究獎

  • World's Top 2% Scientists 2021

  • 科技部工程司110年度產學合作計畫發表暨績效考評會電子資通領域海報組特優,計畫名稱:應用於曲面檢測之表面增強拉曼散射基板的綠色製程開發。

  • World's Top 2% Scientists 2020

  • 國立臺北科技大學電資學院110年年度研究躍升獎

  • 國立臺北科技大學電資學院96年年度傑出研究獎

  • 國立臺北科技大學94年度研發成果申請專利績效優良

  • 國立臺北科技大學機電學院94年年度研究獎

  • 國立臺北科技大學機電學院93年年度研究獎

  • 國立臺北科技大學機電學院92年年度研究獎

  • 國立臺北科技大學機電學院91年度研究特色獎助

  • 國立臺北科技大學機電學院90年度研究特色獎助

發表論文

期刊論文(*表示通訊作者)

  • N. Riswana Barveen, T. J. Wang*, and Y. H. Chang, "Photochemical synthesis of Au nanostars on PMMA films by ethanol action as flexible SERS substrates for in-situ detection of antibiotics on curved surfaces," Chemical Engineering Journal 431, 134240 (2022).
  • T. Kokulnathan, T. J. Wang*, E. Ashok Kumar, and F. Ahmed, "Construction of nickel cobalt-layered double hydroxide/functionalized–halloysite nanotubes composite for electrochemical detection of organophosphate insecticide," Chemical Engineering Journal 433, 133639 (2022).
  • N. R. Barveen, T. J. Wang*, and Y. H. Chang, "A photochemical approach to anchor Au NPs on MXene as a prominent SERS substrate for ultrasensitive detection of chlorpromazine," Microchimica Acta 189, 16 (2022).
  • T. J. Wang*, Y. T. Huang, Z. Y. Liu, and N. R. Barveen, "Photochemical synthesis of ZnO/Ag heterogeneous nanostructure on chemically patterned ferroelectric crystals for high performance SERS detection," Journal of Alloys and Compounds 864, 158120 (2021).
  • T. J. Wang*, P. K. Chen, Y. T. Li, and A. N. Sung, "Athermal high-Q tantalum-pentoxide-based microresonators on silicon substrates," Optics and Laser Technology 138, 106925 (2021).
  • T. J. Wang*, J. S. Chen, A. T. Lee, and Z. Y. Liu, "Anisotropic growth of photoreduced silver nanostructures using surfactant-assisted ferroelectric templates for surface enhanced Raman spectroscopy," Materials Science and Engineering B: Solid-State Materials for Advanced Technology 266, 115059 (2021).
  • T. J. Wang*, N. R. Barveen, Z. Y. Liu, C. H. Chen, and M. H. Chou, "Transparent, Flexible Plasmonic Ag NP/PMMA Substrates Using Chemically Patterned Ferroelectric Crystals for Detecting Pesticides on Curved Surfaces," ACS Applied Materials and Interfaces 13, 34910-34922, (2021).
  • N. Riswana Barveen, T. J. Wang*, and Y. H. Chang, "Photochemical synthesis of Ag/Au/AgCl heterostructure from Ag nanowires as a reusable SERS substrate for ultrasensitive detection of analgesics and antibiotics," Chemical Engineering Journal 423, 130191 (2021).
  • E. A. Kumar, T. W. Chen, S. M. Chen*, T. J. Wang, A. J. Anthuvan, S. Y. AlOmar, N. Ahmad, and Y. H. Chang, "A disposable electrochemical sensor based on iron molybdate for the analysis of dopamine in biological samples," New Journal of Chemistry 45, 11644-11651, (2021).
  • T. Kokulnathan, T. J. Wang*, E. A. Kumar, and Z. Y. Liu, "Zinc Manganate: Synthesis, Characterization, and Electrochemical Application toward Flufenamic Acid Detection," Inorganic Chemistry 60, 4723-4732, (2021).
  • T. Kokulnathan, T. J. Wang*, E. A. Kumar, N. Duraisamy, and L. An-Ting, "An electrochemical platform based on yttrium oxide/boron nitride nanocomposite for the detection of dopamine," Sensors and Actuators B: Chemical 349, 130787 (2021).
  • T. Kokulnathan, T. J. Wang*, N. Duraisamy, E. A. Kumar, and S. An Ni, "Hierarchical nanoarchitecture of zirconium phosphate/graphene oxide: Robust electrochemical platform for detection of fenitrothion," Journal of Hazardous Materials 412, 125257 (2021).
  • T. Kokulnathan, T. J. Wang*, and F. Ahmed, "Construction of two-dimensional molybdenum carbide based electrocatalyst for real-time monitoring of parathion-ethyl," Journal of Environmental Chemical Engineering 9, 106537 (2021).
  • T. Kokulnathan, R. Vishnuraj, T. J. Wang*, E. A. Kumar, and B. Pullithadathil, "Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide," Ecotoxicology and Environmental Safety 207, 111276 (2021).
  • T. Kokulnathan, V. Rajagopal, T. J. Wang*, S. J. Huang, and F. Ahmed, "Electrochemical Behavior of Three-Dimensional Cobalt Manganate with Flowerlike Structures for Effective Roxarsone Sensing," Inorganic Chemistry 60, 17986-17996, (2021).
  • T. Kokulnathan, E. A. Kumar, T. J. Wang*, and I. C. Cheng, "Strontium tungstate-modified disposable strip for electrochemical detection of sulfadiazine in environmental samples," Ecotoxicology and Environmental Safety 208, 111516 (2021).
  • N. R. Barveen, T. J. Wang*, Y. H. Chang, and Z. Yuan-Liu, "Ultrasensitive and reusable SERS probe for the detection of synthetic dyes in food industry through hybrid flower-shaped ZnO@Ag nanostructures," Journal of Alloys and Compounds 861, 157952 (2021).
  • N. R. Barveen, T. J. Wang*, and Y. H. Chang, "Photochemical decoration of silver nanoparticles on silver vanadate nanorods as an efficient SERS probe for ultrasensitive detection of chloramphenicol residue in real samples," Chemosphere 275, 130115 (2021).
  • E. Ashok Kumar, N. Riswana Barveen, T. J. Wang*, T. Kokulnathan, and Y. H. Chang, "Development of SERS platform based on ZnO multipods decorated with Ag nanospheres for detection of 4-nitrophenol and rhodamine 6G in real samples," Microchemical Journal 170, 106660 (2021).
  • T. J. Wang*, G. L. Peng, M. Y. Chan, and C. H. Chen, "On-Chip Optical Microresonators with High Electro-Optic Tuning Efficiency," Journal of Lightwave Technology 38, 1851-1857, 8931581 (2020).
  • T. J. Wang*, M. Y. Chan, I. C. Cheng, A. N. Sung, and C. H. Chen, "Efficient Dual-Polarized Electro-Optically Tunable Microresonators by Utilization of Ultra-Thin Transparent Electrode," Journal of Lightwave Technology 38, 6863-6869, 9187981 (2020).
  • V. Suvina, T. Kokulnathan, T. J. Wang*, and R. G. Balakrishna*, "Unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples," Ecotoxicology and Environmental Safety 190, 110098 (2020).
  • V. Suvina, T. Kokulnathan, T. J. Wang*, and R. G. Balakrishna*, "Lanthanum cobaltite supported on graphene nanosheets for non-enzymatic electrochemical determination of catechol," Microchimica Acta 187, 189 (2020).
  • N. Riswana Barveen, T. J. Wang*, and Y. H. Chang, "In-situ deposition of silver nanoparticles on silver nanoflowers for ultrasensitive and simultaneous SERS detection of organic pollutants," Microchemical Journal 159, 105520 (2020).
  • E. A. Kumar, T. Kokulnathan, T. J. Wang*, A. J. Anthuvan, and Y. H. Chang, "Two-dimensional titanium carbide (MXene) nanosheets as an efficient electrocatalyst for 4-nitroquinoline N-oxide detection," Journal of Molecular Liquids 312, 113354 (2020).
  • T. Kokulnathan, T. J. Wang*, M. Thangapandian, and S. O. Alaswad, "Synthesis and characterization of hexagonal boron nitride/halloysite nanotubes nanocomposite for electrochemical detection of furazolidone," Applied Clay Science 187, 105483 (2020).
  • T. Kokulnathan, T. J. Wang*, E. A. Kumar, V. Suvina, and R. G. Balakrishna, "Development of an Electrochemical Platform Based on Nanoplate-like Zirconium Phosphate for the Detection of Furazolidone," ACS Applied Nano Materials 3, 4522-4529, (2020).
  • T. Kokulnathan, and T. J. Wang*, "Vanadium Carbide-Entrapped Graphitic Carbon Nitride Nanocomposites: Synthesis and Electrochemical Platforms for Accurate Detection of Furazolidone," ACS Applied Nano Materials 3, 2554-2561, (2020).
  • T. Kokulnathan, E. A. Kumar, and T. J. Wang*, "Design and in situ synthesis of titanium carbide/boron nitride nanocomposite: Investigation of electrocatalytic activity for the sulfadiazine sensor," ACS Sustainable Chemistry and Engineering 8, 12471-12481, (2020).
  • T. Kokulnathan, E. Ashok Kumar, and T. J. Wang*, "Synthesis of two-dimensional nanosheet like samarium molybdate with abundant active sites: real-time carbendazimin analysis in environmental samples," Microchemical Journal 158, 105227 (2020).
  • N. R. Barveen, T. J. Wang*, and Y. H. Chang, "Synergistic action of star-shaped Au/Ag nanoparticles decorated on AgFeO2 for ultrasensitive SERS detection of a chemical warfare agent on real samples," Analytical Methods 12, 1342-1352, (2020).
  • T. J. Wang*, H. W. Chang, J. S. Chen, and H. P. Chiang, "Nanotip-assisted photoreduction of silver nanostructures on chemically patterned ferroelectric crystals for surface enhanced Raman scattering," Scientific Reports 9, 10962 (2019).
  • A. Rebekah, T. Kokulnathan, T. J. Wang, C. Viswanathan, and N. Ponpandian, "MnCo2O4-RGO hybrid magnetic nanocomposite modified glassy carbon electrode for sensitive detection of L-tryptophan," Journal of the Electrochemical Society 166, B845-B852, (2019).
  • T. Kokulnathan, and T. J. Wang*, "Synthesis and characterization of 3D flower-like nickel oxide entrapped on boron doped carbon nitride nanocomposite: An efficient catalyst for the electrochemical detection of nitrofurantoin," Composites Part B: Engineering 174, 106914 (2019).
  • T. Kokulnathan, V. Suvina, T. J. Wang*, and R. G. Balakrishna*, "Synergistic design of a tin phosphate-entrapped graphene flake nanocomposite as an efficient catalyst for electrochemical determination of the antituberculosis drug isoniazid in biological samples," Inorganic Chemistry Frontiers 6, 1831-1841, (2019).
  • T. Kokulnathan, T. Sakthi Priya, and T. J. Wang*, "Surface Engineering Three-Dimensional Flowerlike Cerium Vanadate Nanostructures Used as Electrocatalysts: Real Time Monitoring of Clioquinol in Biological Samples," ACS Sustainable Chemistry and Engineering 7, 16121-16130, (2019).
  • T. J. Wang*, F. X. Hua, Y. H. Chang, G. L. Peng, M. H. Chou, and W. K. Hung, "Effects of erbium content on the morphological and photoluminescent properties of sol-gel prepared yttrium oxide film," Ceramics International 44, 1916-1921, (2018).
  • Y. H. Chang*, M. H. Chou, and T. J. Wang, "Synthesis and photoluminescence properties of erbium oxide thin films prepared by sol-gel method," Ceramics International 44, 1163-1167, (2018).
  • T. J. Wang*, H. Y. Hsu, H. W. Chang, H. P. Chiang, Y. R. Li, and P. K. Wei, "Electrostatic-field-tunable ferroelectric template for photoreduction of silver nanostructures applied in Raman scattering enhancement," Optical Materials Express 7, 2838-2846, (2017).
  • T. J. Wang*, B. W. Chen, P. K. Chen, and C. H. Chen, "Er/Si interdiffusion effect on photoluminescent properties of erbium oxide/silicon oxide films deposited on silicon," Journal of Luminescence 192, 1065-1071, (2017).
  • C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. Chou Chau, C. C. Huang, and H. P. Chiang*, "Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial," Scientific Reports 7, 5446 (2017).
  • T. J. Wang*, K. C. Hsu, Y. C. Liu, C. H. Lai, and H. P. Chiang, "Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter," Journal of Optics (United Kingdom) 18, 055006 (2016).
  • T. J. Wang*, P. T. Chen, W. C. Hsiao, and C. H. Chen, "High-Q LiNbO3 microtoroid resonators," Journal of Lightwave Technology 34, 3306-3311, 7469839 (2016).
  • T. J. Wang*, K. H. Lee, and T. T. Chen, "Sensitivity enhancement of magneto-optic surface plasmon resonance sensors with noble/ferromagnetic metal heterostructure," Laser Physics 24, 036001 (2014).
  • T. J. Wang*, C. K. Chaung, T. J. Chen, and B. Y. Chen, "Liquid crystal optical channel waveguides with strong polarization-dependent mode tunability," Journal of Lightwave Technology 32, 4891-4897, 6971095 (2014).
  • T. J. Wang*, W. J. Li, and T. J. Chen, "Radially realigning nematic liquid crystal for efficient tuning of microring resonators," Optics Express 21, 28974-28979, (2013).
  • T. J. Wang*, C. K. Chaung, W. J. Li, T. J. Chen, and B. Y. Chen, "Electrically tunable liquid-crystal-core optical channel waveguide," Journal of Lightwave Technology 31, 3570-3574, (2013).
  • T. J. Wang*, S. C. Yang, T. J. Chen, and B. Y. Chen, "Wide tuning of SiN microring resonators by auto-realigning nematic liquid crystal," Optics Express 20, 15853-15858, (2012).
  • T. J. Wang*, J. Y. He, C. A. Lee, and H. Niu, "High-quality LiNbO3 microdisk resonators by undercut etching and surface tension reshaping," Optics Express 20, 28119-28124, (2012).
  • T. J. Wang*, and Y. C. Cheng, "Integrated-optic polarization rotator with obliquely deposited columnar thin film," Optics Express 20, 601-606, (2012).
  • T. J. Wang*, Y. H. Tsou, W. C. Chang, and H. Niu, "Fabrication of three-dimensional crystalline microstructures by selective ion implantation and chemical etching," Applied Physics A: Materials Science and Processing 102, 463-467, (2011).
  • T. J. Wang*, and P. C. Ho, "Localized surface plasmon resonance biosensing by electro-optic modulation with sensitivity and resolution tunability," Journal of Applied Physics 109, 064703 (2011).
  • T. J. Wang*, C. C. Cheng, and S. C. Yang, "Surface plasmon resonance biosensing by electro-optically modulated attenuated total reflection," Applied Physics B: Lasers and Optics 103, 701-706, (2011).
  • T. J. Wang*, Z. J. Ma, and W. K. Hung, "Integrated-optic wavelength demultiplexer on lithium niobate by double proton exchange," Optical Engineering 46, 024601 (2007).
  • T. J. Wang*, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosensors and Bioelectronics 22, 1441-1446, (2007).
  • T. J. Wang*, and C. W. Hsieh, "Phase interrogation of localized surface plasmon resonance biosensors based on electro-optic modulation," Applied Physics Letters 91, 113903 (2007).
  • T. J. Wang*, and C. W. Hsieh, "Surface plasmon resonance biosensor based on electro-optically modulated phase detection," Optics Letters 32, 2834-2836, (2007).
  • T. J. Wang*, C. H. Chu, and C. Y. Lin, "Electro-optically tunable microring resonators on lithium niobate," Optics Letters 32, 2777-2779, (2007).
  • T. J. Wang*, and C. H. Chu, "Wavelength-tunable microring resonator on lithium niobate," IEEE Photonics Technology Letters 19, 1904-1906, (2007).
  • T. J. Wang*, and W. S. Lin, "Electro-optically modulated localized surface plasmon resonance biosensors with gold nanoparticles," Applied Physics Letters 89, 173903 (2006).
  • T. J. Wang*, C. W. Tu, and F. K. Liu, "Integrated-optic surface-plasmon-resonance biosensor using gold nanoparticles by bipolarization detection," IEEE Journal on Selected Topics in Quantum Electronics 11, 493-499, (2005).
  • T. J. Wang*, Y. H. Huang, and H. L. Chen, "Resonant-wavelength tuning of microring filters by oxygen plasma treatment," IEEE Photonics Technology Letters 17, 582-584, (2005).
  • T. J. Wang*, and J. S. Chung, "Wavelength-tunable polarization converter utilizing the strain induced by proton exchange in lithium niobate," Applied Physics B: Lasers and Optics 80, 193-198, (2005).
  • T. J. Wang*, C. W. Tu, F. K. Liu, and H. L. Chen, "Surface plasmon resonance waveguide biosensor by bipolarization wavelength interrogation," IEEE Photonics Technology Letters 16, 1715-1717, (2004).
  • T. J. Wang*, C. F. Huang, W. S. Wang, and P. K. Wei, "A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3," Journal of Lightwave Technology 22, 1764-1771, (2004).
  • T. J. Wang*, and J. S. Chung, "Electrooptically wavelength-tunable polarization converter utilizing strain-optic effect on X-cut LiNbO3," IEEE Photonics Technology Letters 16, 2275-2277, (2004).
  • H. L. Chen*, W. Fan, T. J. Wang, F. H. Ko, R. S. Zhai, C. K. Hsu, and T. J. Chuang, "Optical-gradient antireflective coatings for 157-nm optical lithography applications," Applied Optics 43, 2141-2145, (2004).
  • T. J. Wang, C. F. Huang, and W. S. Wang*, "Wide-angle 1 × 3 optical power divider in LiNbO3 for variable power splitting," IEEE Photonics Technology Letters 15, 1401-1403, (2003).
  • T. J. Wang*, C. H. Chen, S. M. Chang, Y. J. Tzeng, and Y. C. Chao, "Flexible polymer light-emitting devices based on ruthenium complexes," Microwave and Optical Technology Letters 38, 406-409, (2003).
  • C. R. Lin*, T. J. Wang, K. C. Chen, and C. H. Chang, "Nano-tip diamond-like carbon fabrication utilizing plasma sheath potential drop technique," Materials Chemistry and Physics 72, 126-129, (2001).
  • T. J. Wang, Y. H. Wang, and W. S. Wang*, "Single-mode 1×3 equal-power divider using a substrate microprism and two waveguide expanders," IEEE Photonics Technology Letters 12, 164-166, (2000).
  • T. J. Wang, and W. S. Wang*, "Wide-angle Ni-diffused LiNbO3 abrupt waveguide bend with a proton-exchanged microprism," IEEE Journal on Selected Topics in Quantum Electronics 6, 94-100, (2000).
  • R. S. Cheng, T. J. Wang, and W. S. Wang*, "Wet-etched ridge waveguides in Y-cut lithium niobate," Journal of Lightwave Technology 15, 1880-1887, (1997).

  

發明專利

  • Tzyy-Jiann Wang and Yueh-Hsun Tsou, Method of forming an undercut microstructure, US patent, No. 8377320B2, 2010/7/23~2031/6/21.

  • 王子建、鄒岳勳,製作底切蝕刻微結構的製程方法,中華民國專利號碼發明第I 404136號,2013/8/1~2030/4/12。

  • Tzyy-Jiann Wang and Chih-Wuei Hsieh, Method and device for characterizing analyte using electro-optically modulated surface plasmon resonance based on phase detection, US patent, No. 7728979B2, 2010/6/1~2030/6/1.

  • 王子建、謝志威,相位檢測之電光調變表面電漿共振以檢測待測物之方法及其裝置,中華民國專利號碼發明第I 324253號,2010/5/1~2027/1/14。

  • Tzyy-Jiann Wang and Wen-Shao Lin, Surface-plasmon-resonance sensing technique using electro-optic modulation, US patent, No. 7298488B2, 2005/09/20~2025/9/20.

  • 王子建、林文紹,電光調變表面電漿共振之檢測方法與檢測裝置,中華民國專利號碼發明第I 273231號,2007/2/11~2025/6/26。

  • 王子建、涂振維、劉福鯤、陳學禮,雙極化檢測之表面電漿共振生化感測器,中華民國專利號碼發明第I 245893號,2005/12/21~2024/5/9。

  • 王子建、黃志峰、王維新,藉由電場輔助質子交換之鈮酸鋰濕式蝕刻法,中華民國專利號碼發明第I 241650號,2005/10/11~2022/6/6。

  • 王子建、鍾俊雄、林文紹,應用質子交換之應變結構製作鈮酸鋰光學極化轉換器,中華民國專利號碼發明第I 235858號,2005/7/11~2024/5/9。

  • 陳學禮、范萬達、王子建、陳本昌、謝忠益、柯富祥,光學漸變層及其製作方法,中華民國專利號碼發明第00561552號,2003/11/11~2022/09/26。

 

指導學生獲獎

  • 指導博士班研究生 Nazar Riswana Barveen 參加 Optics & Photonics Taiwan, International Conference 2021 (OPTIC 2021)國際研討會,以論文Construction of flexible plasmonic Ag-NPs/PMMA substrates using chemically patterned ferroelectric crystals for detection of parathion 榮獲 Student Applied Optoelectronics Poster Paper Award。

  • 指導碩士班研究生陳繼盛參加 Optics & Photonics Taiwan, International Conference 2018 (OPTIC 2018)國際研討會,以論文 Raman signal enhancement using tunable ferroelectric templates produced by diluted proton exchange 榮獲學生論文獎。 

  • 指導碩士班研究生詹旻洋參加 Optics & Photonics Taiwan, International Conference 2018 (OPTIC 2018)國際研討會,以論文 Lithium niobate microdisk resonators with high electro-optic tuning efficiency 榮獲學生論文獎。

  • 指導本校光電系學生南平、林昇榆、姚信宇、張誠,以專題題目「腦電波量測分析儀」,獲得電資學院第 9 屆金手獎佳作。 

  • 指導本校光電系學生南平、林昇榆、姚信宇、張誠,以專題題目「腦電波量測分析儀」,獲得光電系 102 學年度專題競賽第一名。 

  • 指導本校光電系學生張坤和、林佑軒、彭皇凱、廖偉辰,以專題題目「可程式化光波長濾波器」,獲得光電系 102 學年度專題競賽第三名。 

  • 指導本校光電系學生王思文、徐阡、梁凱傑,以專題題目「高功率二氧化碳雷射系統控制器之研製」,獲得光電系 101 學年度專題競賽第一名。

  • 指導本校光電系碩士班學生莊棋凱,於2011年10月參加台灣真空學會論文發表會,以「玻璃蝕刻凹槽中之向列形液晶通道光波導」論文,榮獲學會論文優等獎。 

  • 指導本校電資專班學生李佳陵,於2011年10月參加太陽光電第三屆論壇大專研發成果產品應用競賽,以參賽作品「彎道警示燈」,榮獲產品應用組第二名。 

  • 指導本校電資專班學生李佳陵,以專題題目「應用磁光效應於表面電漿共振檢測之研究」,獲得通過國科會 100 年度大專學生參與專題研究計畫。