

光電工程系

大學部

以電熱調控膽固醇液晶之光子能隙 Electro-Thermal Tuning of Photonic Band Gap in Cholesteric Liquid Crystal

指導教授:蔡淑雲 教授

專題生:陳俊豪、簡立豪

中華民國 一百零三年 六月

第1	章	摘要	1
第2	2章	液晶簡介	2
	2.1	液晶介紹	2
	2.2	液晶分類	3
		2.2.1 向列型液晶 (Nematic LC)	3
		2.2.2 層列型液晶 (Smectic LC)	4
		2.2.3 膽固醇型液晶 (Cholesteric LC)	5
	2.3	手性分子(chiral)	6
	2.4	雷射原理	7
	2.5	雷射種類	8
		2.5.1 氣體雷射	8
		2.5.2 固體雷射	9
		2.5.3 液體雷射	.10
		2.5.4 液晶雷射	.10
	2.6	螢光	.11
第3	3章	膽固醇液晶的光學特性	.12
第4	章	實驗方法	.13
	4.1	實驗原理	.13
	4.2	實驗樣品製作	.15
		4.2.1 材料介紹	.15
		4.2.2 實驗樣品製作所需器材及儀器	.16
		4.2.3 實驗樣品製作流程	.16
	4.3	自製溫度控制儀	.17
		4.3.1 自製溫度控制儀各項配件	.17

目錄

4.3.2 温控致冷晶片的工作原理18
4.3.3 自製溫控儀器說明19
4.4 熱重分析儀(Differential Scanning Calorimeter,DSC)
4.5 實驗量測架構21
4.5.1 實驗所需各項儀器及軟體21
4.5.2 穿透光譜實驗裝置21
4.5.3 受激光譜實驗裝置22
第5章 實驗結果和討論23
5.1 溫度對穿透光譜的影響23
5.2 温度對布拉格波長的影響
5.3 MDA-98-1602 摻雜各濃度 S811 之熱重分析儀(DSC)量測27
5.4 溫度對 MDA-98-1602 摻雜各濃度 S811 之布拉格波長影響
5.5 S811 為(40wt%) 摻雜染料 PM 597 光譜圖與受激輻射光譜圖
第6章 結論
第7章 未來展望及應用
參考文獻
附錄 : 2014 年物理年會海報

圖目錄

啚	2.1 向列型液晶分子排列
圖	2.2 層列型液晶分子排列4
圖	2.3 膽固醇型液晶分子排列5
圖	2.4 膽固醇液晶選擇性反射性5
圖	2.5 手性分子示意圖6
圖	2.6 雷射三要素7
圖	3.1 Bragg 反射示意圖12
圖	4.1 手性分子(S811)結構15
圖	4.2 雷射染料分子(PM597)結構15
圖	4.3 致冷晶片實體圖
圖	4.4 致冷晶片工作示意圖(a)順向電流(b)逆向電流
圖	4.5 自製溫控儀器示意圖
圖	4.6 自製溫控儀器實體圖19
圖	4.7 熱重分析儀(Differential Scanning Calorimeter, DSC)
圖	4.8 典型的熱重分析圖
圖	4.9 穿透光譜實驗裝置21
圖	4.10 膽固醇液晶的受激光譜量測裝置22
圖	5.1 實驗量測 MDA-98-1602+S811(25wt%)在溫度 15 時穿透光譜圖23
圖	5.2 S811 為 16wt%時各種不同溫度之穿透光譜圖24
圖	5.3 S811 為 25wt%時各種不同溫度之穿透光譜圖24
圖	5.4 S811 為 34wt%時各種不同溫度之穿透光譜圖25
圖	5.5 S811 為 40wt%時各種不同溫度之穿透光譜圖25
圖	5.6 S811 摻雜濃度(16wt%、25wt%、34wt%和 40wt%)在不同溫度下的布
拉	格波長

圖 5.7 S811 掺雜濃度(16wt%、25wt%、34wt%和 40wt%)在 20 度下的理想布
拉格波長
圖 5.8 S811 摻雜濃度(16wt%、25wt%、34wt%和 40wt%)之熱重分析。27
圖 5.9 溫度對 S811 摻雜不同濃度(16wt%、25wt%、34 wt%和 40wt%)之布拉
格波長影響
圖 5.10 S811 為(40wt%) 摻雜染料 PM597 在不同溫度下的穿透光譜圖 29
圖 5.11 S811 為(40wt%) 摻雜染料 PM597 受激光譜圖及受激輻射之圖案 29

第1章摘要

由於雷射的崛起,現在生活與雷射息息相關,雷射相當應用很廣泛,主要 有光纖通信、雷射光譜、雷射測距、雷射雷達、雷射切割、雷射掃瞄...等等, 雷射種類主要分為固態雷射、氣體雷射、染料雷射、液晶雷射...等。但雷射多 為特定波長,且造價不斐,所以我們須調控液晶,去配合不同雷射之不同波 長。

我們藉由向列型液晶 MDA 98-1602 掺雜手性分子 S811 製成膽固醇液晶, 利用膽固醇液晶(CLC)本身之螺旋結構特性,使得介質的折射率產生週期性的 改變,便形成了一維的光子晶體。週期性的螺旋結構特性與膽固醇液晶螺距及 液晶平均折射率息息相關,因為在液晶光子能隙的邊緣其群速為零,故可視為 一維的共振腔。此外,我們調配好的液晶做熱重分析儀(differential scanning calorimetry,DSC)的分析觀察到液晶相態的變化,再與穿透光譜比對後,發現當 溫度靠近其相變溫度 Tc 時,隨著溫度的變化,其選擇性反射之波段有明顯的變 動。因此只要搭配雷射染料(PM597)作為增益介質並控制在適當的溫度,經由 外部短脈衝光源的激發就可以得到不同波長的雷射。

第2章 液晶簡介

2.1液晶介紹

液晶(liquid crystal)的首度發現,由歷史文獻記載是於西元 1888 年,奧地利 的植物學家 F. Reinitzer 研究膽固醇的脂化合物時,發現加熱此化合物,出現了 二次溶解的現象。此化合物加熱至 145℃時,呈現一種介於固相和液相間的半熔 融流動白濁狀液體,而當溫度升高到 179℃,則變成透明的等向性液體(isotropic liquid)。1889 年,德國物理學家 O. Lehmann 對此化合物做詳細的分析。他在 偏光顯微鏡下發現,此白濁液體化合物具有異向性(anisotropic)結晶所具有的雙 折射率(birefringence)的光學性質,故將這種似晶體的液體命名為液晶。因此, 對於『液晶』的詮釋,我們可以說它是在某一特定溫度的範圍內,將同時具有液體 及晶體的特性,換言之,既有液體的流動性質,亦有晶體的光學異向性質。 2.2液晶分類

2.2.1向列型液晶 (Nematic LC)

向列型液晶為棒狀分子作平行排列,其分子軸方向保持平行,但不具有層 列型液晶般的層狀構造,只有一維的規則度。它具有光學上的正折射性。與層 列型液晶比較,該液晶分子於長軸方向容易自由運動,因此其分子間作用力 小,黏度也較小,且易於滑動,為所有的種類液晶中,流動性最大者,是液晶 成員中最重要的,也是最廣泛被使用者。如果以高倍顯微鏡觀察液晶分子,可 以看到如細帶狀的外形,其命名 Nematic 在希臘語中是細扁帶狀的意思,結構 如圖 2.1 所示,而本實驗則採用 MDA-98-1602 向列型液晶。

圖 2.1 向列型液晶分子排列

2.2.2 層列型液晶 (Smectic LC)

這類型的液晶為棒狀分子以層狀構造排列,各個分子與層面垂直或具有一傾 斜角度,而且所構成的分子均為互相平行排列,其細分有A、C、B、F、I、M、 L、G、J、E、H、K 等多種。由於分子層間分子的互相結合力較弱,易於滑動, 因此層列型液晶具有二維的流體性質與二維的規則性。此液晶中,垂直於分子的 光速比平行方向的光速慢,光學上稱之為光的複折射性。而且,這類液晶的黏度 比一般液晶顯著為大,是其一大特徵。

圖 2.2 層列型液晶分子排列

2.2.3 膽固醇型液晶 (Cholesteric LC)

當手性分子(chiral)掺雜在向列型液晶中,會使液晶產生螺旋畸變,而得 到一種螺旋向列相,其液晶分子排列仍有共同取向(即導軸),其分子平行堆 積層狀排列,層和層間互相平行,在每一層中分子有一向列型一般彼此同向排 列著,其長軸和層面平行。在相鄰的兩層之間,分子的長軸方向規則性地依次 旋轉一定角度,層層旋轉下來形成一個螺旋狀結構。液晶分子的長軸方向再旋 轉一圈 360 度後,又回到相同方向,而螺距約為可見光的波長。這類液晶分子 基於特殊的螺旋構造,可以使得入射光偏轉,在光學上具有旋光性、選擇性光 反射、圓偏光二色性等性質。定義導軸繞螺旋軸旋轉 2π 的長度為一個螺距 (Pitch),因為這種螺旋型的排列結構類似生物學中的膽固醇結構,因此稱為 膽固醇液晶,如圖 2.3 所示。膽固醇液晶會將奧液晶旋性相同的入射光反射 [5],如圖 2.4。

圖 2.3 膽固醇型液晶分子排列

Left hand helix

圖 2.4 膽固醇液晶選擇性反射性

2.3手性分子(chiral)

手性分子,是化學中結構上鏡像對稱而又不能完全重合的分子。碳原子在 形成有機分子的時候,4個原子或基團可以通過4根共價鍵形成三維的空間結 構。由於相連的原子或基團不同,它會形成兩種分子結構。這兩種分子擁有完 全一樣的物理、化學性質。但是從分子的組成形狀來看,它們依然是兩種分 子。這種情形像是鏡子里和鏡子外的物體那樣,看上去互為對應。由於是三維 結構,它們不管怎樣旋轉都不會重合,就像左手和右手那樣,稱這兩種分子具 有手性,因此稱為手性分子。因此這兩種分子互為同分異構體,這種異構的形 式稱為手性異構,有R型和S型兩類,如圖 2.5。

圖 2.5 手性分子示意圖

2.4 雷射原理

雷射是指通過受激輻射而產生放大的光,即受激輻射的光放大。當外加能 量以電場、光子、化學等方式注入到一個能級系統並為之吸收的話,會導致電 子從低能級向高能級躍遷,當自發輻射產生的光子碰到這些因外加能量而躍上 高能級的電子時,這些高能級的電子會因受誘導而遷到低能級並釋放出光子。

一般雷射發產生器有三個基本要素:

「激發來源」(pumping source):把能量供給低能級的電子,激發使其成為 高能級電子,能量供給的方式有電苛放電、光子、化學作用...。

「增益介質」(gain medium):被激發、釋放光子的電子所在的物質,其物理 特性會影響所產生雷射的波長等特性。

「共振腔」(optical cavity/optical resonator):是雨面互相平行的鏡子,一面 全反射,一面半反射。作用是把光線在反射鏡間來回反射,目的是使被激發的 光經過增益介質多次以得到足夠的放大,當放大到可以穿透半反射鏡時,雷射 便從半反射鏡發射出去。因此,此半反鏡也被稱為輸出耦合鏡(output coupler)。兩鏡面之間的距離也對輸出的雷射波長有著選擇作用,只有在在兩 鏡間的距離能生共振的波長才能產生雷射。

圖 2.6 雷射三要素

2.5 雷射種類

2.5.1氣體雷射

氣體雷射是以氣體當活性介質,它是使用的活性介質種類最多、激發方式 最多樣化、雷射波長分布區域最廣的一種雷射。

氟體雷射所採用的工作物質,可以是原子氣體、分子氣體、電離化的離子 氣體以及金屬蒸汽等,因此可相應的稱為原子氣體雷射(如:氦氖雷射)、分 子氣體雷射(如:二氧化碳雷射)。

氣體雷射由於其物態固有的特性,所以優點有:氣體分子分布均勻、能階 較單純,因此氣體雷射的光品質在均勻性和同調性方面都較佳,干涉或精密量 測用要求高品質的雷射,通常採用之;另外氣體分子對流、循環較快速,容易 作冷卻處理,所以在需要高功率且連續運轉的應用,如雷射切割、銲接等,也 大都採用氣體雷射。缺點則有:因為氣體密度最低,要得到瞬間的脈衝高峰值 功率比較難,所以用在金屬上的雕刻比較少。

1. 氦氖雷射(He-Ne Laser):

是最早產生的連續輸出雷射,雖然它的運轉效率很低,輸出功率不高,但是它的光束品質極佳,又為可見光波段的紅光,製造和結構也較簡單,所以用途普及,被廣泛應用在:標定、準直、教學實驗、展示、精密 量測、干涉術、全像術、檢測、醫療等等。

2. 氧化碳雷射(CO2 雷射):

二氧化碳雷射是一種分子氣體雷射,是以二氧化碳氣體分子為工作介質,利用CO2氣體分子的兩個振動能階態形成的居量反轉而引出雷射來。

因為氣體分子的振動能階態能量很低,容易激發,再加上雷射產生的 量子效率高達百分之五十左右,所以CO2雷射的運轉效率很高,作為高功 率輸出的雷射最為恰當。 2.5.2固體雷射

固體雷射是以固體當活性介質,大部分是將具有產生受激發射作用的離子 摻入玻璃或晶體之中,以人工方法製造而成。

固體雷射由於其物態固有的特性,所以優點有:固體密度較高,容易得到 瞬間的脈衝高峰值功率,所以常用在金屬的雕刻方面;固體雷射輸出波長大多 在可見光和近紅外波段,可用光纖傳輸,比較方便應用;可配合Q開關、倍 頻、鎖模等技術,改變其輸出參數,拓展多種用途。缺點則有:因為固體的關 係,大功率的散熱冷卻不容易,或會影響到其輸出品質,所以比較少用在連續 高功率的切割應用。

1. 掺釹釔鋁石榴石 (Nd:YAG) 雷射:

以人工長晶製成的掺敛纪鋁石榴石結晶棒為活性介質,用強光照射激 發得出 1.06 微米的近紅外線雷射,此晶體的機械性能良好,硬度高、導熱 性好,可高功率連續或重複脈衝輸出,是固體雷射裡最重要也是用途最廣 的雷射。Nd:YAG 雷射加裝 Q 開闢,可得到高速重複脈衝,在工業上普遍 用於穿孔、雕刻、修整、銲接。若結合倍頻、三倍頻技術,可以得到綠光 甚至紫外線波段的輸出,在電子工業上用途就更加廣泛。

2. 半導體雷射:

半導體雷射或稱雷射二極體具有體積輕巧、效益高、消耗功率小、使 用壽命長、以及容易由電流大小來調制其輸出功率、調制頻率可達十億赫 茲等特性。這些特性使它廣泛應用於資訊處理、光纖通訊、家電用品及精 密測量上。而且,因製作精細、技術層次高,對於整體光電產業而言,具 有舉半導體雷射的基本結構 足輕重的地位,也是關鍵半導體的電子遷移種 類:(a)直接遷移,(b)間接遷移。

9

2.5.3液體雷射

以液體當活性介質,具有不破裂性,冷卻循環容易,介質的組成成分、濃度可任意變化,兼具氣體、固體雷射的一些優點,可得到極窄的脈波輸出。

液體雷射大都以染料(Dye)當介質,一般採強光或氣體雷射激發,可以用改 變染料的濃度和溫度來得到不同波段的雷射光,再利用在共振腔中加裝光柵用 以挑選出波長的話,則可以在某一波段間,任意改變輸出雷射的波長。主要應 用在化學的光譜研究或整形外科使用較多。

2.5.4液晶雷射

液晶雷射是將液晶當作共振腔,使用染料作為增益介質。從雷射激發介質 發射波長和偏振。激發介質通常是摻雜到液晶的染料。液晶雷射大小和二極體 雷射相當。液晶雷射也可以說是染料雷射的一種。

2.6螢光

當某種常溫物質經某種波長的入射光照射,吸收光能後進入激發態,並且 立即退激發並發出出射光(通常波長比入射光的的波長長,在可見光波段)因 此螢光本身能量比吸收的光還低,然而,當吸收的光能量很高時,會有雙光子 吸收可導致比吸收的輻射更短的波長輻射發射,發出的輻射也可能是所吸收的 輻射波長相同[1];而且一旦停止入射光,發光現象也隨之立即消失。具有這種 性質的出射光就被稱之為螢光。

在日常生活中發生的螢光的最顯著的例子是在紫外線光譜區中時,所吸收 的輻射,從而對人眼不可見的,所發出的光在可見光區域。人們通常廣義地把 各種微弱的光亮都稱為螢光,而不去仔細追究和區分其發光原理。

第3章 膽固醇液晶的光學特性

Bragg Law[11]

在光折變材質當中若折射率呈現週期性的變化,我們可以將他是做週期性 材料(periodic media)。假設入射波被晶體內各原子平行面所反射,而每一層平 面就像輕輕地鍍上銀鏡面一樣,只反射一部份的波,在類似鏡面反射下入射角 等於反射角,若從各個平行原子平面所反射的光束產生建設性干涉時,才可以 產生繞設圖形,如圖 3.1 所示。

圖 3.1 Bragg 反射示意圖

膽固醇液晶的選擇性反射此一特殊光學性質類似於晶體的 Bragg 反射,其反射 公式為式(3-1):

$$\lambda_B = 2nd\sin\theta \tag{3-1}$$

由得知螺距 P 為兩相鄰晶格平面間距的兩倍故可化簡為:

$$\lambda_{\rm B} = nP\sin\theta \tag{3-2}$$

由式(3-2)得知,當 $\theta=90^{\circ}$ 時 $\lambda_{B}=nP$,亦即入射光平行於膽固醇螺距軸,會有最大反射波長出現。

第4章 實驗方法

4.1 實驗原理

在向列型液晶(MDA-98-1602)掺雜手性分子(S811),使液晶分子因手性分子 影響產生週期性扭轉,產生週期性的折射率變化,此時可把液晶視為一維的光 子晶體結構。

光子或電子能量可能在一特殊結構下呈現不連續性,即某些光子或電子能 量無法存在於此結構下,稱為"能隙"(energy band gap),此一不連續性的大小就 稱為能隙寬度。既然電子在原子晶格內具有電子能隙的現象,那麼光子晶體內 也應該有"光子能隙"的存在,而符合此能隙的光波,因為無法存在於光子晶體 內,所以當這種光波入射時必然出現全反射現象,如同一個周期性的多層膜全 反射,所以光子晶體可子看作是把一度空間的多層薄膜,在往二度、三度空間 加以延伸。

入射光中其中符合光子能隙的光波會發生全反射的現象,而其餘波長的光 波則可以穿透。在一維光子晶體的能隙邊緣,群速趨近於零,光子密度會積聚 在該位置處,其實就是光子可以在這個結構多重反射,如同形成駐波,有加強 性的增益。如同上述,也表示了在這光子能隙邊緣,光子會有加強性的增益, 此處可用來激發雷射,它可以被視為一維諧振腔[3]。

液晶光子能隙的中心波長 λ_B ,公式為 $\lambda_B = n_{avg} \times P$, n_{avg} 是液晶平均折射率,P 是螺旋間距。

13

我們在掺雜染料(PM597)當增益介質,液晶光子晶體當共振腔,做出液晶 雷射,因膽固醇液晶會因為在因素如:機械應力、電場、溫度等等[4.5.6],本 專題藉由改變液晶溫度,觀察其雷射現象。

異常折射率	n _e : 1.7779
正常折射率	n _o : 1.5113
平均折射率	$n_{avg} = (n_e + n_o)/2 = 1.6446$
臨界溫度	T _c :~109 °C
螺紋間距	P=1/(CxHTP)
	C: Chiral 濃度 HTP: 螺旋扭力
能隙中心波長	$\lambda c = n_{avg} \times P$
能隙寬度	$\Delta \lambda = (n_e - n_o) \times P$
能隙邊緣長波長	$\lambda_{LSW} = n_e \times P$
能隙邊緣短波長	$\lambda_{SWE} = n_{o} \times P$

表 4-1 原理相關公式與參數

4.2實驗樣品製作

4.2.1材料介紹

專題中所使用的材料為向列型液晶(MDA-98-1602)、手性分子 (S811)、雷射 染料(PM597)。

(1) 手性分子(Chiral)

為一種光學活化性(optically active)物質,將手性分子(chiral dopant)加入 向列型液晶(nematic liquid crystal)時,會使液晶變成膽固醇相之液晶(Cholesteric Liquid Crystal),對向列型液晶(NLC)造成的螺旋扭轉的能力以 Helical Twist Power(HTP)表示。而本實驗採用 S811 手性分子,其分子排列如圖 4.1 所示。 而在 20℃下,S811 對液晶的 HTP 值為-10.8µm (正值代表右旋,負值代表左 旋)。

圖 4.1 手性分子(S811)結構

(2) 雷射染料(laser dye)

PM597 為本實驗所採用的增益介質,結構如圖 4.2 所示。

圖 4.2 雷射染料分子(PM597)結構

4.2.2實驗樣品製作所需器材及儀器

表 4-2 實驗樣品製作所需器材及儀器

4.2.3實驗樣品製作流程

1.	將向列型液晶 MDA-98-1602 與手	2. 將玻璃瓶放置加熱平台加熱混
	性分子 S811 已經命的微量電子秤	合, 並用玻棒均勻攪拌使向列型
	量取適當的量放入玻璃瓶內。	液晶與手性分子材料混合。
3.	以滴管吸取適量的混合溶液,	4. 使用 AB 膠將液晶盒兩邊的缺
	滴在液晶合的缺口,利用毛細	口密封,避免液晶從缺口外
	現象使溶液充满液晶盒之夾層	露。
	中。	

表 4-3 實驗樣品製作流程

4.3自製溫度控制儀

4.3.1自製溫度控制儀各項配件

自製溫度控制儀各項配件			
名稱	型號	用途	
致冷晶片	TEC1-127.10	通過直流電流可自由進行冷卻、	
		加熱、溫度控制的半導體元件。	
CPU 散熱器	FBA08A24H	利用風扇帶走散熱片所吸收的熱	
	DC24V \ 0.17A	量,但對環境的依賴性高,故室	
		內溫度可以加以配合,以達到穩	
		定的温控系统。	
鋁塊	165×60×10(mm)	為導熱與散熱性極佳的材料。	
數位溫度感測器		用以檢測溫度,其測溫精度為±	
		0.1°C °	

表 4-4 自製溫度控制儀各項配件

4.3.2温控致冷晶片的工作原理

我們使用的致冷晶片型號為 TEC1-127.10,尺寸為 40mm×40mm×3.3mm, 如圖 4.3 所示。將致冷晶片平放,面對兩條電線(紅線與黑線),不同的接法其 會有不同的效果:

- 順向電流:正電壓連接紅線,負電壓連接黑線,致冷晶片會將下層熱量往上 層移動,造成上層溫度升高,下層溫度降低,如圖 4.4(a)所示。
- 逆向電流:正電壓連接黑線,負電壓連接紅線,致冷晶片會將上層熱量往下 層移動,造成上層溫度降低,下層溫度升高,如圖 4.4(b)所示。

如果把導熱金屬(如鋁塊)接觸致冷晶片下層,順向電流會產生冷卻的功效, 逆向電流會產生加熱的功效,如此可達成溫度控制的目的。

圖 4.3 致冷晶片實體圖

(a)

圖 4.4 致冷晶片工作示意圖(a)順向電流(b)逆向電流

為了完整包覆液晶盒,我們使用兩片致冷晶片,設計出上下層同時冷卻或 加熱的功能,將兩片致冷晶片串接到電路系統,如此使用一台交換式單電源供 應器,並加上數位溫度感測器,就可以藉由操控電流的順向及逆向來達到溫控 的效果,電路示意圖如圖 4.5,自製溫控儀器如。

圖 4.5 自製溫控儀器示意圖

圖 4.6 自製溫控儀器實體圖

4.4熱重分析儀(Differential Scanning Calorimeter,DSC)

圖 4.7 熱重分析儀(Differential Scanning Calorimeter, DSC)

當高分子材料經加熱軟化後,最顯著的變化就是其比熱發生變化。因此, 高分子材料的熱重分析圖的基線在軟化後,必發生極明顯的轉折。所以,熱重 分析儀 (Differential Scanning Calorimeter ,DSC) 是一種可用以檢測高分子材 料相轉換的有利工具,主要是利用比較樣品盤和空白盤之間熱的吸收量來進行 分析。樣品盤和空白盤分別置於兩個獨立但相似的電加熱爐中,兩個爐子不論 何時都必須保持相同的溫度。假如樣品產生變化,將會伴隨著吸收或放出熱 量,因此兩邊的爐子溫度就不一樣,電腦就依照狀況增加或減少輸入的電熱功 率 (Heat flow dq/dt)使兩邊維持等溫,再依照功率的差值對溫度作圖,典型的 熱重分析圖如圖 4.8。

圖 4.8 典型的熱重分析圖

4.5實驗量測架構

4.5.1實驗所需各項儀器及軟體

名稱	型號	用途
自製溫度控制儀器		控制液晶盒温度
垂直式光學量測平台	STAGE-RTL-T	固定光纖及溫控儀器
一般實驗光纖	P600-2-UV-VIS	傳輸光
白光光源	LS-1	提供 360-2000nm 波段的
		光
Q-switched Nd:YAG 綠光雷	EKSPLA NL201	做為 CLC 之激發源
射		
透鏡 x3	f= 2.5 、 7.5 、	準直及擴束
	20(cm)	
光譜儀	USB4000XR	偵測 200-1000nm 波段的
		光
Ocean Optics SpectraSuite		光譜資料擷取語儲存系統

表 4-5 實驗所需各項儀器及軟體

4.5.2穿透光譜實驗裝置

本實驗使用白光 LS-1(Ocean)為光源,經有光纖傳輸至垂直式光學量測平台下方,使光源傳第到溫控平台內的膽固醇液晶盒上,而光源穿透過液晶盒的光 再藉由一般實驗光纖傳遞給光譜儀,接著利用 Ocean Optics SpectraSuite 觀察其 穿透光譜。

圖 4.9 穿透光譜實驗裝置

4.5.3受激光譜實驗裝置

圖 4.10 顯示膽固醇液晶的受激光譜量測裝置,利用 Q-Switched Nd:YAG 綠 光雷射作為激發光源,經由兩個透鏡及反射鏡使原雷射光準直後並擴束,再利用 四分之一波板使穿透的光產生產生圓偏振,並利用透鏡使原光聚焦,接著入射至 膽固醇液晶上,最後再藉由光譜儀來量測受激光譜。

圖 4.10 膽固醇液晶的受激光譜量測裝置

第5章 實驗結果和討論

5.1温度對穿透光譜的影響

膽固醇液晶樣品是由 MDA-98-1602 掺雜手性分子 S811 依照不同重量百分 濃度(16wt%、25 wt%、34 wt%、40wt%)混合而成,使用的液晶盒厚度為 5 µm,將膽固醇液晶樣品放置在一個自製的溫控平台內,觀察溫度對反射帶中心 波長的影響,使用光譜儀 USB4000XR(Ocean optics),其可量測範圍為 200-1025 nm。顯示出 MDA-98-1602+S811(25wt%)的膽固醇液晶樣品在 15°C 下的穿透光 譜,並定義布拉格波長(bragg wavelength, λ_B)是由實驗量測出穿透帶之長波長邊 緣 $\lambda_{LWE} = n_e P$ (long wavelength edge)與短波長邊緣 $\lambda_{SWE} = n_o P$ (short wavelength edge)之平均值,如圖 5.1。

圖 5.1 實驗量測 MDA-98-1602+S811(25wt%)在溫度 15 時穿透光譜圖

圖 5.2 顯示出 S811 為 16wt%時各種不同溫度之穿透光譜圖,可以發現溫度 由 10℃升高至 35℃時,布拉格波長由 937nm 移動到 916nm;圖 5.3 顯示出 S811 為 25wt%時各種不同溫度之穿透光譜圖,可以發現溫度由 10℃升高至 35℃時,布拉格波長由 616nm 移動到 606nm,顯示出膽固醇液晶的布拉格波長 受到溫度所影響而產生改變,但是改變並不明顯。

圖 5.3 S811 為 25wt%時各種不同溫度之穿透光譜圖

圖 5.4 顯示出 S811 為 34wt%時各種不同溫度之穿透光譜圖,可以發現溫度 由 10℃升高至 35℃時,布拉格波長由 487nm 移動到 407nm;圖 5.5 顯示出 S811 為 40wt%時各種不同溫度之穿透光譜圖,可以發現溫度由 10℃升高至 35℃時,布拉格波長由 707nm 移動到 388nm,顯示出膽固醇液晶在 S811 為 40wt%時的布拉格波長受到溫度所影響產生劇烈的改變。

圖 5.4 S811 為 34wt%時各種不同溫度之穿透光譜圖

圖 5.5 S811 為 40wt%時各種不同溫度之穿透光譜圖

根據關係 $\lambda_B = \frac{n}{HTP*C}$ 以 C 為橫軸 λ_B 為縱軸作圖,如圖 5.6,並以 MDA-98-1602、S811 在 20°C 的參數做理想曲線,如圖 5.7。在 10°C、15°C 時濃度為 34wt%、40wt%的 λ_B 變化不符合與濃度 C 成反比的關係,隨著溫度上升其曲線 有逐漸回到理想曲線的趨勢。

圖 5.6 S811 掺雜濃度(16wt%、25wt%、34wt%和 40wt%)在不同温度下的布拉格波長

圖 5.7 S811 掺雜濃度(16wt%、25wt%、34wt%和 40wt%)在 20 度下的理想布拉格波長

5.3 MDA-98-1602 掺雜各濃度 S811 之熱重分析儀(DSC)量測

圖 5.8 顯示 S811 為 16 wt%及 25 wt% 時在-20℃ 到 60℃ 之間沒有發生相 變; S811 為 34wt%、40wt%分別在溫度 1.7℃ 及 12.7℃ 時發生相變(Ch-SmA)[9],當溫度低於相變溫度 T_C 會由原本的 Cholesteric phase 變成 Smectic A phase。

圖 5.8 S811 摻雜濃度(16wt%、25wt%、34wt%和 40wt%)之熱重分析。

5.4溫度對 MDA-98-1602 掺雜各濃度 S811 之布拉格波長影響

S811為40wt%的曲線與其它曲線相交但並不重疊,表示造成其波長劇烈變化的主要原因不是溶解度,因為如果變化主要是由溶解度造成那麼其它濃度在從15℃往下降時,應該也會產生劇烈變化,但根據圖 5.9,掺雜濃度為 25 wt%、31 wt%、34 wt%並沒有劇烈的變化,因此推論造成 S811為40wt%的布拉格波長在 12.7℃劇烈變化主要原因不是取決於溶解度。

根據 Keating's theory[10], Pitch 與溫度的關係為式子(5-1):

$$P(T) = \gamma \frac{T_c}{T} \left(1 + \frac{\beta}{T - T_c} \right)^2$$
(5-1)

當溫度在靠近相變溫度 T_C時,Pitch 會急劇上升,根據關係 $\lambda_B = nP$,因此 λ_B 也會急劇上升。

圖 5.9 溫度對 S811 掺雜不同濃度(16wt%、25wt%、34 wt%和 40wt%)之布拉格波長影響

由圖 5.10 我們可以觀察到其穿透光譜顯示出此膽固醇液晶的能隙位置產生 的範圍約在 400nm 到 900nm 之間,而在接近 530nm 的位置可以發現穿透光譜 有明顯的凹陷產生,這是由於染料的吸收所造成,而圖中的黃線為染料 PM 597 之螢光光譜;根據圖 5.11,受激輻射光譜在 560 至 640 之間,且可以觀察到不 同的受激輻射圖案,不過因為溫度控制在相變溫度附近,因此當使用雷射去激 發時,液晶的溫度升高使其波長劇烈造成受激輻射相當不穩定。

圖 5.10 S811 為(40wt%) 掺雜染料 PM597 在不同温度下的穿透光譜圖

圖 5.11 S811 為(40wt%) 掺雜染料 PM 597 受激光譜圖及受激輻射之圖案

第6章結論

對由向列型液晶 MDA-98-1602 掺雜手性分子 S811 形成的膽固醇液 晶,在掺雜濃度高於 34wt%時在接近室溫的範圍,布拉格波長隨著溫度的 變化會有較明顯的改變,有利於電熱調控,且根據實驗結果,造成其對溫 度敏感的主要原因取決於相變(Ch-SmA)而不是溶解度。因此對其做電熱調 控,工作溫度的範圍應選在靠近相變溫度 Tc。

若希望激發出的雷射可以在室溫之下做波長的調變,應選擇相變溫度 Tc在室溫的手性分子摻雜濃度,並配合適當的增益介值,就可以達到在室 溫下可調變的膽固醇液晶雷射。

第7章未來展望及應用

未來發展

- 1. 尋找效率最高、穩定性最佳的液晶種類。
- 2. 在膽固醇液晶上外加直流電壓觀察光子能隙範圍的變化。
- 3. 利用掺雜不同染料,增加其激發出雷射波長的範圍。

應用

- 1. 可以降低雷射的體積,未來將雷射帶入薄型體積的領域。
- 2. 讓一台雷射發射器可以激發出不同波段的雷射。
- 配合儀器的使用可以降低儀器成本。

參考文獻

- Harry coles* and Stephen Morris, "Liquid-crystal lasers" NaturePhotonics 4, 676, (2010)
- [2] Na Youngha1, Youko Ohtsuka1, Soon Moon Jeong1, Suzushinishimura2, Goroh Suzaki2, Yoichitakanishi1, Ken Ishikawa1 and Hideotakezoe1*," Fabrication of a simultneosu RGB reflector using single pitched cholesteric LCs" NatureMaterials 7, 43, (2008)
- [3] V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. vol.23, pp. 1707–1709 November 1998.
- [4] H. Finkelmann, S.T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," *Adv. Mater.* vol.13, pp.1069–1072 July 2001.
- [5] S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, "Electrical control of thestructure and lasing in chiral photonic band-gap liquid crystals," *Appl. Phys. Lett.* vol.82, pp.16–18 January 2003.
- [6] Yuhua Huang, Ying Zhou, Charlie Doyle, and Shin-Tson Wu, "Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility," *Opt. Express* vol.14, pp.1236-1242 January 2006.
- [7] C.-R. Lee, S.-H. Lin, H.-C. Yeh, T.-D. Ji, K.-L. Lin, T.-S. Mo, C.-T. Kuo, K.-Y. Lo, S.-H. Chang, A. Y. Fuh, and S.-Y. Huang, "Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch," *Opt. Express* vol.17, pp. 12910–12921 July 2009.
- [8] Jun Li, Sebastian Gauzia, and Shin-Tson Wu, "High temperature gradient refractive index LCs" Ope-12-2002-2004

- [9] S.-Y.T. Tzeng, C.-N. Chen & Y. Tzeng (2010) Thermal tuning band gap in cholesteric liquid crystals, Liquid Crystals, 37:9, 1221-1224.
- [10] Keating, P.N. Mol. Cryst. Liq. Cryst. 1969, 8, 315–326.
- [11] Kittel原著,洪連輝,劉立基,魏榮君 編譯,"固態物理學導論",高立圖書 8sted.,2009

附錄: 2014 年物理年會海報

Thermal Tuning The Photonic Band Gap In Cholesteric Liquid Crystals

Chun-Hao Chen; Li-Hao Jian; Shwu-Yun Tsay Tzeng*; Ja-Hon Lin

Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, Taiwan 106, ROC

sytsay@mail.ntut.edu.tw

The thermal tunability of cholesteric liquid crystals(CLC) by mixing the positive dielectric anisotropy nematic liquid crystal MAD-98-1602 with chiral dopant S811 have studied. The temperature dependence of selective transmission band of mixtures containing different ratios (wt %) of chiral dopant S811 were examined. Below 30wt%, a room temperature cholesteric phase was achieved. Upon heating mixtures with composition S811>34wt%, the selective transmission band of the CLC appeared and blueshifted with temperature increasing over T_c. Thermal tuning from 1000 to 400 nm was observed over temperature range of 10-40 °C. The LC phases of the mixtures of S811 and MAD-98-1602 were further studied by differential scanning calorimetry. With composition S811>34%, A smectic A phase was seen at room temperature.

(A) Transmission spectrum at 25°C of MDA-98-1602 doped (C)Differential scanning calorimetry study of with S811 for 16wt% to 40wt%

(B) Transmission spectrum for 25wt%, 34wt% and 40wt% at d

(D) Conclusion

The LC phase of mixture of S811 and MDA98-1602 were studied by DSC. For composition of 16wt% and 25wt% the phase transition is not obvious. Further cooling the sample of 34wt% and 40wt%, the Ch-SmA transition are obvious. We conclude that the transmission spectrum shifts obviously as temperature is close to Ch-SmA transition temperature.